Reg. No.

ACH 503

Third Semester M.Sc. Degree Examination, December 2018 APPLIED CHEMISTRY Polymers and Photochemistry

(CBCS : 2016-17 Syllabus)

Time: 3 Hours Max. Marks: 70

Note: i) Answer Part – **A** and **any four** questions from Part – **B**.

ii) Figures to the **right** indicate **marks**.

PART - A

1. Answer all sub-divisions of the following:

 $(2 \times 9 = 18)$

- a) Differentiate between addition and condensation polymers with two examples for each type.
- b) Calculate the average molecular weight of a polypropylene sample with average degree of polymerization of 1000.
- c) Write the structure of repeating units of the following polymers:
 - i) polybutylene
 - ii) poly(methyl methacrylate)
 - iii) poly (ethylene terephthalate)
 - iv) polyterafluroethylene.
- d) Amorphous polymers exhibit glass transition whereas crystalline polymers exhibit melting. Justify.
- e) Explain optical isomerism in polymers with PVC as an example.
- f) Give the reactions involved in the preparation of polycarbonates.
- g) Using Jablonski diagram, represent radiationless transitions and radiative transitions and explain the diagram.
- h) Explain the principle involved in flash photolysis technique.
- i) Mention the types of photoisomerization reactions with one example for each type.

PART – B

An	swe	er any four of the following: (4×13	=52)
2.	a)	Explain the system of representing the structure and naming of polymers considering the following classes: i) polyolefins ii) polyesters iii) polyamides.	6
	b)	Outline the principle of GPC technique and explain its use in polymer characterization.	7
3.	•	Explain polydispersity in polymers. Calculate the polydispersity index of a sample containing equal number of molecules of molecular weights 10 st and 10 st gmol ⁻¹ .	6
	b)	Discuss the kinetics of cationic and anionic polymerization. (4+3)
4.		What are stereoregular polymers? How are they made? Explain. Write a note on conducting polymers considering the following aspects:	6
	D)	structure, preparation and applications.	7
5.		Explain any six factors that influence the Tg and Tm of polymers with relevant data.	6
	ŕ	Outline the principle of the following techniques of polymer processing: i) injection moulding and ii) melt spinning. Write a note on acrylic polymers.	3
6		What is meant by actinometry? Discuss the use of chemical actinometers	.
Ο.	Í	in the study of photochemical reactions.	6
	b)	Write notes on the following photochemical reactions: i) Photo Fries rearrangements ii) Norrish type I and II cleavage reactions.	4
	c)	Certain reaction absorbs 4×10^{16} quanta of light/sec. On irradiation for 20 mins 0.008 mole of reactant is found to have reacted. Find out the quantum yield.	3
7.	ŕ	Discuss the kinetics of collissional quenching and obtain the Stern-Volmer equation. Explain the significance of the equation.	6
	D)	Define the Franck-Condon principle. Describe its implications in predicting the shapes of absorption and emission spectra.	7